skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Jagabathula, Srikanth"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Probability distributions over rankings are crucial for the modeling and design of a wide range of practical systems. In this work, we pursue a nonparametric approach that seeks to learn a distribution over rankings (aka the ranking model) that is consistent with the observed data and has the sparsest possible support (i.e., the smallest number of rankings with nonzero probability mass). We focus on first-order marginal data, which comprise information on the probability that item i is ranked at position j, for all possible item and position pairs. The observed data may be noisy. Finding the sparsest approximation requires brute force search in the worst case. To address this issue, we restrict our search to, what we dub, the signature family, and show that the sparsest model within the signature family can be found computationally efficiently compared with the brute force approach. We then establish that the signature family provides good approximations to popular ranking model classes, such as the multinomial logit and the exponential family classes, with support size that is small relative to the dimension of the observed data. We test our methods on two data sets: the ranked election data set from the American Psychological Association and the preference ordering data on 10 different sushi varieties. 
    more » « less